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Background

Objective:

Take state-of-the-art weather analysis system and
make it scalable for distributed memory multi-
processor machines

Goal:

To bring mesoscale Four-Dimensional Variational
Analysis (4DVAR)  into the realm of operational
forecasting
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Support

Supported by DoD High Performance Computing
and Modernization Office (HPCMO)

– Common High Performance Computing
Software Support Initiative (CHSSI), project
CWO-5

– 3 year effort, started February 2000
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Participants

AFRL: Program Management

– Frank Ruggiero

AER: Code Development

– Thomas Nehrkorn

– George Modica

– Mark Cerniglia

ANL: Parallel Implementation

– John Michalakes

FSU: Physics Development,
Test Data

– Xiaolei Zou
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4D Data Assimilation vs 4DVAR
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MM5 4DVAR

Serial Version of mesoscale 4DVAR exists

Based on Fifth Generation NCAR/PSU Mesoscale
Model, Version 1 (MM5v1)

Developed by Xiaolei Zou at NCAR and released
in 1997

Original CWO-5 plan was to make this 4DVAR
version scalable
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Migration to MM5v3

CWO-5 migrated from MM5v1 to MM5v3 (v3.3) in Oct
‘00

– facilitate implementation of parallel strategy

• save development time and effort

• increase potential speedup factor

– sync 4DVAR system with newest forecast
model

• greater community acceptance
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MM5 4DVAR System
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The Tangent-Linear and Adjoint
Model Compiler (TAMC)

TAMC is a source-to-source translator that
generates Fortran code for the TLM or ADJ from
the NLM code

– TAMC can be used remotely for
noncommercial use, free of charge
http://puddle.mit.edu/~ralf/tamc

– supports almost the full FORTRAN-77 standard
and most Fortran-90 extensions to FORTRAN-
77



11

The Tangent-Linear and Adjoint
Model Compiler (TAMC)

Could incorporate TAMC as part of a pre-
compilation process

– would make for truly “same source” 4DVAR
system

• need maintain NLM only

We use TAMC as a development tool only

– separately maintain TLM and ADJ

• minimizes required changes to NCAR-
supported MM5 code
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TLM, ADJ Code Generation and Test
Procedure
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Unit and Unit Integration Testing
Requirements
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Where

J(X), J(X+ δX) are cost
functions from NLM

δJ(X, δX) is from TLM

Where

x is TLM input

y = L(x) is TLM output

L, L* are TLM, ADJ
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Serial version of MM5v3.3 TLM completed in
December 2000

Migrated TLM to MM5v3.4 in Dec ‘00
– good test of our code generation/maintenance procedures

– v3.4 code generation and testing (TLM only) accomplished in
less than one week!

Parallel Version of TLM completed in March ‘01

Serial version of Adjoint model:

Coding - 100% complete

Unit testing - 90% complete

TLM and Adjoint Development Status
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Parallelization of MM5 TLM

Follows procedure developed
for MM5v3 NLM

– 2-D horizontal data
decomposition
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Parallelization of MM5 TLM

Follows procedure developed
for MM5v3 NLM

– 2-D horizontal data
decomposition

– Communication of
lateral boundary
conditions between
processors

– Implementation straight
forward since data
dependencies are
similar in NLM and TLM
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RSL - Parallel run-time system library

– Interface with MPI, provides high-level stencil and inter-domain
exchange, irregular domain decomposition, automatic
local/global index translation, and distributed I/O.

FLIC - Fortran loop and index converter

– Parser-based source translation tool that automates the
conversion of program loops and array indices for distributed-
memory parallel computers.

– Utilizes RSL-provided loop ranges.

Distributed Memory (DM)-specific code fragments

DM-specific subroutines

DM-related files

– Includes makefiles, tables, misc files used to install,
preprocess, compile, and link code in DM-parallel mode.

Same-Source Parallel
Implementation
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4DVAR Baseline and MPP Directory
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TLM Scaling Performance
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TLM Multiprocessor, Cross-Platform
Correctness Performance

Obtained bit-for-bit agreement (real*8) between 1-
processor, 4-processor parallel, and serial runs of
TLM

– meets final project objective

Obtained  14-digit agreement between above runs on
SGI Origin, ASC IBM SP3, and DEC Alpha
Workstation cluster

– meets final project objective
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Parallelization of MM5 Adjoint

2-D horizontal data decomposition

Communication for horizontal dependencies

– Analysis of dependencies in Adjoint

• Significantly different from NLM and TLM

– Some restructuring of data (3D tend arrays)

– Implemented with RSL and FLIC

Distributed I/O

– Model input and output (similar to NLM)

– Scratch I/O for trajectories
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Complete Adjoint model testing

Code incremental driver

Complete Adjoint model parallel code implementation

Prepare satellite observation operators

Assemble satellite data preprocessor

β-Test

– emulate AFWA computing environment

• IBM SP3 computer (either at ASC or NAVO)

• operational dataset as input (from CRDA)

– compare forecast, timing metrics with AFWA-MM5
forecast

Remaining Tasks
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Summary

CWO-5 will produce MM5 4DVAR code for DM MPP

– based on current MM5 release

– Alpha version available Fall 2001

– Beta version available Fall 2002

– Project completion Feb 2003

CWO-5 development team has put considerable effort into
ensuring

– risks are minimized for successful operational
implementation

– product will be well tested and of high quality

– a robust update migration path exists


